

WECC

Long-duration ES Performance Metrics

May 11, 2022

Stan Holland

Key Characteristics and Metrics

- Performance
 - Nameplate Capacity
 - Depth of Discharge and Usable Capacity
 - Cycle Life and Degradation
 - Energy Density / Power Density
 - Storage efficiency and Energy lost in storage/standby
- Cost
 - Cost of Usable Capacity
 - Lifetime Cost of Usable Capacity

Nameplate Capacities

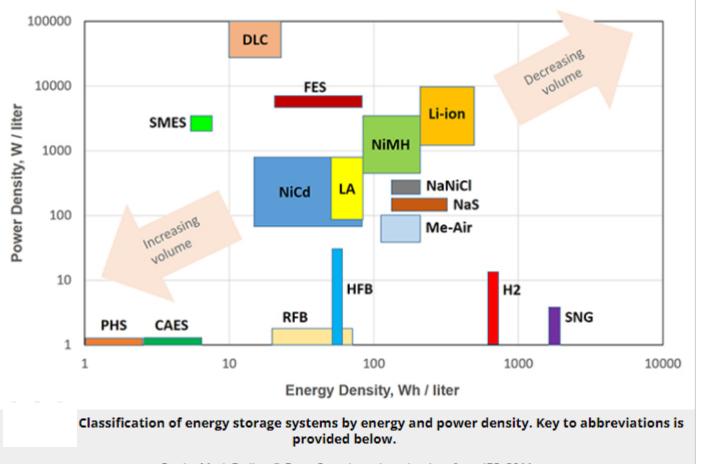
- Storage capacity (MWh)
- Discharge capacity range max/min (MW)
 - 100 MW X 4 hours = 400 MWh
 - 50 MW X 8 hours = 400 MWh
- Charge capacity range max/min (MW)
- Charge rate (MW/hour) minimum, optimal, maximum
- Operating range (min / max)
- Charge time (hours to charge from min to max)
 - Function of charge rate

Depth of Discharge (DoD)

- The percentage of the nameplate energy that is being used
- Determined by design parameters and usage recommendations
- Usable Capacity = Nameplate energy X DoD
 - Example:
 - 1000 MWh X 80% DoD = 800 MWh
 - 1000 MWh X 60% DoD = 600 MWh

Cycle Life and Degradation

- Cycle Life
 - The number of times that a storage technology can be charged and discharged over its lifetime
 - Often a function of the depth of discharge
- Degradation
 - The reduction in maximum capacity over time
- Average State of Charge
 - The degradation caused by remaining at a high state of charge over time



Energy Density / Power Density

- Energy Density
 - Relates the storage capacity to the size or mass of the storage
 - Technologies with higher energy densities will be more compact
- Power Density
 - Indicates how quickly a storage system can release power
 - Measured in watts per kg or watts per liter

Energy Density vs. Power Density Comparison

Credit: Mark Fedkin © Penn State based on the data from IES, 2011

CAES – Compressed Air Energy Storage DLS – Double Layer Capacitor FES – Flywheel Energy Storage H2 – Hydrogen storage LA – Lead Acid Battery Li-ion – Li ion Battery Me-air – Metal Air Battery Me-air – Metal Air Battery NaNiCl – Sodium Nickel Chloride Battery NaS – Sodium Sulfur Battery NiCd – Nickel Cadmium Vented Battery NiCd – Nickel Cadmium Vented Battery NiMH – Nickel Metal Hydride Battery PHS – Pumped Hydro Storage RFB – Redox Flow Battery SMES – Superconducting Magnetic Energy Storage SNG – Synthetic Natural Gas

Storage Efficiency

- The efficiency of the charge discharge cycle, also called Roundtrip efficiency
 - Accounts for losses during each phase of the cycle from charge to storage to discharge
 - Examples: (from Penn State EME 812 2011/2012 data)
 - Lead-Acid Battery 75 90%
 - \circ Li-ion Battery 85-98%
 - Pumped hydro 70 80%
 - \circ Compressed Air 41 75%
 - Hydrogen 34 44%

Energy Lost in Storage

- Losses after charging and before discharging
- Standby vs. storage losses
- Types of storage losses
 - Station service cooling, heating,
 - Evaporation
 - Chemical maintenance

Cost of Usable Capacity

- Installed cost per MWh capacity
 - Cost of Usable Capacity = Installed cost / Usable MWh capacity

Lifetime Cost of Usable Capacity

- Commonly called Levelized Cost of Energy (LCOE)
 - LCOE = Installed Cost / Lifetime Usable MWh Capacity
- LAZARDS annual study of LCOE
 - Now includes energy storage and hydrogen

PCM Inputs for Storage

- Maximum and Minimum storage (MWh)
- Initial storage at first hour of study (MWh)
- Efficiency
- Capacity Factor
- Schedule Mode 1 (load curve, price curve)
- Schedule Mode 2 (hourly, daily, weekly)
- Multi-day schedule pattern (storage targets)
- Cost Benefit Ratio
- Charge capacity max/min (MW); Discharge capacity max/min (MW)
- Weekly Energy (MWh) [optional]
- LMP Price to charge (\$); LMP Price to discharge (\$)
- Ramp up / down rates (MW/hour)
- Reserve contribution (%); Ancillary Services contribution (%)

PCM Storage Horizon

- GridView is limited to hourly, daily, or weekly
- Would need a work-around to model seasonal storage. WECC will work with vendor on this.

PCM Costs

- Production cost represents cost to serve load
 - Fixed costs not modeled by WECC; data often confidential
 - Variable costs are modeled using publicly available data
 - Fuel consumption
 - Variable O&M
 - Start-up
 - Carbon tax
 - Wheeling
- Perhaps a different cost-based tool would work better for LDES cost metrics
 - Capital expansion
 - Hybrid

Future Considerations

- Check with PCDS, PCMS, vendor, National Labs, CEC funded studies (UC Merced), and other industry sme's
- Storage duration of 1 week or more for study
- What level(s) of clean energy? Goal is 100%, but subject to solution success.

Contact:

Stan Holland sholland@wecc.org